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RIGIDITY AND CONVEXITY OF HYPERSURFACES
IN SPHERES

M. P. DO CARMO & F. W. WARNER

1. Introduction

We shall consider isometric immersions x: M* — X*'! of a compact, con-
nected, orientable, n-dimensional (n > 2), C* Riemannian manifold M™ in a
simply connected Riemannian manifold X"**! of constant sectional curvature.
When X **! is the Euclidean space E£*'', the following results, usually associated
with the names of Hadamard and Cohn-Vossen, are known.

If M" has non-negative sectional curvatures, then

(a) x(M™)C E**'is the boundary of a convex body; in particular, x is an
embedding and M* is diffeomorphic to the unit sphere S* C E**'.

(b) If y: M* — E* is another isometric immersion, then x and y differ by
a rigid motion (isometry) of E*'".

Part (a) of the above result, for n = 2 and positive curvature, was first proved
by Hadamard [8]. The case » = 2 with non-negative curvature was considered
by Chern-Lashof [6], and the result for arbitrary n follows from papers by van
Heijenoort [16] and Sacksteder [14]; a simple direct proof can be found in
do Carmo-Lima [7].

Part (b) for n=2 and positive curvature is the famous Cohn-Vossen theorem
a simple proof due to Herglotz may be found in [5]. The case » = 2 with non-
negative curvature was considered by K. Voss [17] and, independently, by
Pogorelov [11]. A proof for the general case follows from Sacksteder [15,
Theorem V}].

In this paper we shall primarily consider the case where X™*' is the unit
sphere $*'! C E"*® with its canonical metric of constant sectional curvature
equal to one. (We indicate briefly in § 5 the situation obtained when X"*! is a
simply connected manifold of constant negative curvature.) A natural substitute
for the above condition on the sectional curvatures is the requirement that the
sectional curvatures of M* be greater than or equal to one (the curvature of
the ambient space). We shall prove that the Hadamard and Cohn-Vossen
results have exact analogues in this case. Precisely, we prove the following

1.1. Theorem. Let x: M" — S be an isometric immersion of a com-
pact, connected, orientable n-dimensional C~ Riemannian manifold into the
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(n + 1)-sphere of constant sectional curvature equal to one, and assume that all
sectional curvatures of M* are greater than or equal to one.

(a) Then x is an imbedding, M" is diffeomorphic with §*, and x(M") is
either totally geodesic or contained in an open hemisphere; in the latter case
x(M™) is the boundary of a convex body in S**'.

(b) If y: M» - §"*' s another isometric immersion, then there is an
isometry o of $**' such that ccox = y.

1.2. Remarks.

(a) If the sectional curvatures of M?* are strictly greater than one, then the
case 1.1(b) for n > 2 follows trivially from the classical rigidity theorem {4,
p. 211].

(b) Assuming the truth of 1.1(a), the assertion 1.1(b) for n = 2 follows
from Pogorelov [13, p. 105].

(¢) In [12] Pogorelov proves a very general rigidity theorem which includes
our assertion 1.1(b) for n = 2 and curvature strictly greater than one.

2. The Beltrami maps

The proof of Theorem 1.1 will require extensive use of the Beltrami maps
in transforming problems on the sphere S"*! to problems in a Euclidean space,
so we shall devote this section to defining these maps and deriving their relevant
properties.

Let v S**', and let H, denote the open hemisphere of S**! centered at v.
The Beltrami map B, is the diffeomorphism of H, onto the hyperplane S, C E**?
tangent to $**' at v obtained by central projection. 1n the special case in which
v is the north pole (0, - --,0, 1), we shall denote the corresponding Beltrami
map by B,, the open northern hemisphere by H,, and the tangent hyperplane
at the north pole by §,. If points of H, are denoted by (n + 2)-tuples (&, - - -,
&,.2) of real numbers with >} & =1 and &,,, > O, then the Beltrami map j,
is explicitly given by

( 1 ) ,30(5) = (S]/Sn+2, Sz/‘fzwz, s '5€n+1/€n+2’ ]) .

It is well known (and easily checked) that these maps are geodesic, that is, they
map geodesics of the sphere setwise onto geodesics (straight lines) in the tangent
hyperplanes (where we consider each tangent hyperplane of $**! to be equipped
with the canonical Riemannian structure inherited from £***). We shall use 8,
to transform hypersurfaces of H, with sectional curvatures greater than or equal
to one into hypersurfaces of S, with sectional curvatures greater than or equal
to zero, and vice versa. To see that 3, indeed does have this effect we first
prove two lemmas (Lemmas 2.1 and 2.2 below) for which we need a few
definitions.

By the height function for an oriented hypersurface at a point p we shall
mean the function defined on a neighborhood of the origin in the tangent plane



RIGIDITY AND CONVEXITY 135

of the hypersurface at p and assigning to each point of this neighborhood the
height, with respect to the oriented normal, of the hypersurface above its
tangent plane as measured in a normal coordinate system about p in the ambient
manifold. Since the origin is a critical point for such a height function, the
matrix of second partial derivatives at the origin determines a well defined
bilinear form in the tangent space of the hypersurface at p called the hessian
of the height function, and as well known [4, p. 198], this hessian form is the
negative of the second fundamental form for the hypersurface at that point.
By the eigenvalues of the second fundamental form, or the hessian form, we
shall mean the eigenvalues of the symmetric linear transformations in the
tangent space induced by these forms relative to the given inner product.

2.1. Lemma. Lei m be a point on an oriented hypersurface in E**', and
suppose that in a neighborhood of m on the hypersurface the eigenvalues of the
second fundamental forms do not have different signs. Then there is a neigh-
borhood of m on the hypersurface which lies on one side of the tangent hyper-
plane at m. '

Proof. For simplicity we may assume that m is the origin 0 of E**! and
that the hypersurface is represented near O by the equation z = f(x), where f
is a real-valued function defined on the open unit disc D about the origin in
E*c E**' with f(0) = 0 and all first partial derivatives of f vanishing at 0.
We may also assume that the hypersurface is oriented so that the oriented unit
normal at O is the unit vector in the positive “z direction”, and without loss
of generality we may assume that all the eigenvalues of the second fundamental
forms on this piece of hypersurface are negative or zero. Thus, at any point g
on the hypersurface, the eigenvalues of the hessian of the height function are
all positive or zero. We shall prove the hypersurface lies on one side of its
tangent planc at O; indeed we shall prove f(x) > O for all xe D, and to this
end we argue by contradiction. Suppose there is a point p € D where f(p) < 0.
Then there must exist a ¢, with 0 < ¢, < 1 such that the function A(f) = f(tp)
has a negative second derivative at #,; thus A”(t,) < 0. Consider now the
corresponding curve P(¢) = (¢p, f(tp)) on the hypersurface, and let /, denote
the height function of the hypersurface above its tangent hyperplane T, at P(¢,),
and let X be the parallel vector field on T, determined by P’(t,). We shall show
that the second derivative X*(#,) at the origin of T, is negative and this will
contradict the fact that the hessian of A, at the origin of T, is positive semi-
definite. Now the height of P(f) above the tangent plane T, is given by

ho(®) = [P() — P(t)]-n ,

where # is the oriented unit normal at P(f,), and the second derivative X%(h,)
at the origin in T is easily seen to be A{'(¢,). Now hy/(t,) = P”(1,)-n, which is
(0, A"(1,)) - (-grad f(¢,p), + 1), which equals 4”’(¢,). Since this, as we have seen,
is negative, the proof is complete.
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We also need the version of the above lemma for hypersurfaces of a sphere.

2.2. Lemma. Let m be a point on an oriented hypersurface in S***, and
suppose that in a neighborhood of m on the hypersurface the eigenvalues of the
second fundamental forms do not have different signs. Then there is a neighbor-
hood of m on the hypersurface which lies on one side of the tangent hyper-
sphere at m.

Proof. We argue by contradiction. Suppose the hypersurface cuts its tangent
hypersphere at m, and restrict attention to a neighborhood U of m on the
hypersurface on which the second fundamental forms are everywhere, say,
negative semi-definite (which can be achieved by a change of orientation if
necessary), so that the hessians of the height functions are all positive semi-
definite. Transfer this hypersurface, together with its orientation, to the
Euclidean space S,, via the Beltrami map 5,,.

Since the hypersurface 8,,(U) cuts its tangent plane at m, according to the
preceding lemma there must be a point 3,,(p) € 8,,(U) at which the hessian of
the height function has a negative eigenvalue, and therefore in the direction
of the corresponding eigenvector the hypersurface §,(U) locally lies on the
side of its tangent plane at 3,(p) opposite from the oriented normal direction.
We claim the hessian of the height function for U at p also has a negative
eigenvalue, which will provide us with a contradiction. Since the hessian of
the height function for §,,(U) at 8,(p) has a negative eigenvalue, the surface
B,(U) and its tangent plane at 8,(p) have contact of order exactly 1 in the
corresponding eigen-direction. That is, there is a pair of curves, one on the
surface 3,,(U) and one on its tangent plane at 3,,{(p) both passing through 3, (p)
tangent to this eigendirection and having contact of order exactly one at 3,,(p)
and no such pair will have higher order contact. Now contact is preserved
under diffeomorphism [9, p. 80], so the hypersurface U and its tangent hyper-
sphere at p have contact of order exactly 1 in the corresponding direction.
Therefore in this direction the height function at p must have a non-zero second
derivative, which is necessarily negative since in this direction the hypersurface
U lies for a while on the side of its tangent hypersphere at p opposite from the
oriented normal direction. Thus the hessian of the height function at p is not
positive semi-definite, which is a contradiction.

We are now in a position to describe the effect which the Beltrami maps
have on sectional curvatures. If X is a Riemannian manifold, K, shall denote
the function which assigns to each 2-plane tangent to X its sectional curvature.

2.3. Proposition. Let ve §*'', let X C H, be a hypersurface, and let X
denote the hypersurface B,(X) in S,. Then K, > 1 everywhere if and only if
K& > 0 everywhere. Moreover, if K > 1, and if the rank of the second funda-
mental form for X at peX is r,0 < r < n, then the rank of the second
fundamental form for X at B,(p) is also r.

Proof. Let pe X and assume Ky > 1. Recall that the sectional curvature
K y(P) of a 2-plane P C X ,, where X, denotes the tangent space of X at p, is
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given by
Ky (P) = 1 + Su(p)x, 0)Sx(pXy, ¥) — (Sx(p)x, ¥))* .

where S (p) is the second fundamental form for the hypersurface X at p, and
{x, y} is an orthonormal basis of P. The sign of S,(p) depends on a choice of
one of the two unit normals at p—we assume a continuous choice of unit
normals on a neighborhood of p. Suppose first that not all of the eigenvalues
of S¢(p) are zero. Since K, > 1, it follows that all the non-zero eigenvalues
of Sy(p) will have the same sign, and nearby p all the non-zero eigenvalues of
the second fundamental forms for X will have that same fixed sign. Therefore
from Lemma 2.2, the hypersurface X locally lies on one side of the tangent
hypersphere through p. Since the Beltrami map 5, sends this hypersphere to a
hyperplane in S,, X must locally lie on one side of its tangent hyperplane at
8.(p). Thus all sectional curvatures at 8,(p) e X are > O, for if there were a
negative sectional curvature at 8,(p), X would lie on both sides of its tangent
hyperplane at 3,(p). Now suppose that all eigenvalues of Sy(p) are zero. If
they vanish identically on an entire neighborhood of p, then X is totally
geodesic near p, so X is totally geodesic and in particular flat near 8,(p). 1f
each neighborhood of p contains points at which there are non-zero eigenvalues
of the second fundamental form for X, then there is a sequence {p,;} in X con-
verging to p, for which we already know that the sectional curvatures at 5,(p;)
are all > 0. Hence by continuity, the sectional curvatures at §,(p) are all > 0.

A similar argument in the reverse direction shows the converse, namely, if
Ky >0, then Ky > 1.

Now assume that the rank of S(p) is r. Equivalently the hessian of the height
function at p has rank r. If in addition K, > 1, then there is an r-dimensional
subspace 4 of X, on which the hessian is either positive or negative definite.
It follows that in each direction in A the hypersurface X has contact of order
exactly 1 with the tangent hypersphere through p. Since contact is preserved
by the diffeomorphism §,, there is an r-dimensional subspace of X, ., along
which X has contact of order exactly 1 with the tangent hyperplane through
B.(p). Consequently, the rank of the hessian of the height function for X at 8,(p)
must be at least r, so that rank S#(5,(p)) > rank Sy(p). Reversing the argument
we obtain the opposite inequality. Hence rank S¢(3,(p)) = rank Sy(p).

2.4. Remarks.

(a) It follows from Proposition 2.3 that a point in X at which all sectional
curvatures are strictly greater than one, is mapped under 8, into a point of X
at which all sectional curvatures are strictly greater than zero, and vice versa.

(b) It would have been easier in Proposition 2.3 if we could have concluded
from the curvature assumption on X that X was locally convex in the sphere;
for then since the Beltrami map B, is geodesic, it would follow directly that X
would be locally convex in the Euclidean space S,, implying that all sectional
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curvatures for X are non-negative. However, it should be observed that with-
out some global condition, the fact that K, > 1 does not suffice to ensure the
local convexity of X in $*''. The following is adapted from an example in
[14]. Let z = x*(1 + ¥*) be a surface 2 in E® defined in a small neighborhood
of the origin, let w: E*— S, be an isometry preserving the origins, and con-
sider the surface 3;'(a(X)) in S$° It is easily seen that the curvature of X is
greater than or equal to zero, and hence, by Proposition 2.1 the curvature of
57 (a(2)) is greater than or equal to one. On the other hand, X “crosses” its
tangent plane at the origin; hence it is not locally convex at 0. Since the map
8, is geodesic, it follows that 5;7Y(a(2)) is not locally convex at 3;%(0). Our
Theorem 1.1 implies that such a piece of surface cannot be extended to a com-
pact surface in $* with curvature greater than or equal to one.

2.5. Lemma. Let x: M — S*'! be an isometric immersion of a complete
Riemannian manifold M into the sphere S"*', and let v §**', N = x"'(H),
and %=§,0x|N. Then the Riemannian structure on N induced by the immersion
X: N — S, is also complete.

Proof. Let {p,} be a Cauchy sequence in N with respect to the metric in-
duced by ¥, and let ¢, = x{(p,). Since H, is compact, the g;’s, or a subsequence,
converge to a point g € H,. Since x is an isometric immersion of the complete
Riemannian manifold M into $**', ¢ = x(p) for some p e M. Now ¢ actually
belongs to H,, for if ¢ were in the equator H — H, then the sequence {8.(g.)}
would diverge to oo in §,, which is impossible in view of the assumption that
{p.} is a Cauchy sequence in NV with respect to the metric induced by ¥ = §,cx.
Thus g ¢ H,, so p e N. Since the sequence {3,(g;)} converges to §,(qg), it follows
that the Cauchy sequence {p;} converges to p in the metric on N induced
from X. ]

This completes the information we shall need concerning the Beltrami maps,
and we now begin the proof of Theorem 1.1.

3. Proof of Theorem 1.1 (a)

If all sectional curvatures on M" are equal to one, then according to O’Neill
[10] x is an isometric imbedding of M® onto a great n-sphere in S**!,
from which the theorem follows for this special case. If not all sectional
curvatures are one, we shall first prove that there is at least one point of M*,
at which all sectional curvatures are greater than one. Suppose this is not the
case (that is, we are assuming that there are sectional curvatures greater than
one, but at no point are all sectional curvatures greater than one); we shall
derive a contradiction. Let p be a point of M*, at which the second fundamental
form for the immersion x has maximal rank, say r. It follows from our
assumptions that 1 < r < n. Let v = x(p), and as before let H, be the open
hemisphere centered at y, and j, the corresponding Beltrami map. Let N, =
xMH), x, = x|{N,, and X = B,ox,. Now N, has two Riemannian structures
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—one inherited from M=, for which x,: N, — H, is an isometric immersion,
and the other with respect to which ¥, : N, — S, is an isometric immersion. To
distinguish these Riemannian structures we shall denote N, with the metric in-
duced from %, by N,. Then it follows from Proposition 2.3 and Lemma 2.5
that N, is a complete Riemannian manifold with sectional curvatures greater
than or equal to zero and that the second fundamental form for N, has
maximal rank r. According to Sacksteder [14], through each point of %(N)
there passes an (n — r)-dimensional plane I/ entirely contained in (N, along
which the tangent hyperplane of %,(N,) is constant and contains /7, moreover
distinct (# — r)-planes in this collection are parallel. Under 8, these planes
are mapped to (n — r)-dimensional great hemispheres contained in x(N,).
Now it is a classical local fact that on a neighborhood U of x(p), where the
rank of the second fundamental form is constantly equal to r, the distribution
determined by the O-eigenspaces of the second fundamental form is integrable.
The integral manifolds of this distribution must agree on U with the above
(n — r)-spheres; otherwise, the maximal rank of the second fundamental form
for N, would be < r. It follows from another application of Sacksteder’s
theorem that for any v e U these (n — r)-spheres (more precisely, their
intersections with {/) must map under the Beltrami map §,. to parallel planes
in S,.. We thus have a contradiction; for given a collection of (n — r)-spheres
in $**!, which are transformed under one Beltrami map into parallel planes,
one can always find a nearby Beltrami map for which the images are no longer
parallel. Thus, if there are sectional curvatures of M" greater than one, then
there is at least one point of M™ at which all sectional curvatures are greater
than one.

Now let p e M* be a point at which all sectional curvatures are greater than
one. Then one can choose v ¢ $**! such that x(p) lies in the equater H — H,
and such that there is a neighborhood V' of p in M satisfying the condition
x(V — {p}) € H,. We next prove that x(M* — {p}) C H,. Let N, be the con-
nected component of x~'(H,) containing V' — {p}. As before, let x, = x|N,,
and %, = f,0x,, and let N, denote N, with the Riemannian structure induced
by %,. Then by Proposition 2.3 and Lemma 2.5, N, is a complete Riemannian
manifold with sectional curvatures greater than or equal to zero, and at some
point g # p in V, all sectional curvatures of N, are positive. Thus from the
main theorem of [14] it follows that i,(ﬁ,) C §, is the boundary of a convex
body which contains no complete line, and since N, is non-compact, N, is
diffeomorphic to a Euclidean space. If we choose the neighborhood V' of p to
be homeomorphic to a disc, it follows from the above that the image X(3V)
of the boundary gV of V separates %,(N,) into two connected components, one
of which, say W, is bounded inS,. Let meN, — V. Then we claim X,(m) e W.
Assume the contrary, and choose a curve in N,U{p} joining m to p, which
“crosses” @V only once. The image of this curve under %, starts in the unbound-
ed component, crosses ¥,(3F) only once and becomes unbounded. This con-
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tradiction proves our claim. Thus no point of H, — H, is a limit point of
x,(N, — V), and hence no point of H, — H,, except x(p) it self, is a limit
point of x,(N,). Since M* is connected, it follows that x(M"* — {p}) C H, as
we asserted. -

Now we can choose ' near the v used above so that x(M") lies entirely in
the open hemisphere H,.. Then §,.0x: M* - S,, is an isometric immersion of
a compact manifold with non-negative sectional curvatures in the induced
metric. According to Sacksteder [14] (see also [7]), 5, cx(M") is the boundary
of a convex body in S,.. Applying §,;' we immediately obtain the conclusions
of part (a) of Theorem |.1.

4. Proof of Theorem 1.1 (b)

We now assume that M is a compact, connected, orientable, C* Riemannian
manifold with K;; > 1, and that x and y are two isometric immersions of M"
into S*+1L.

If all sectional curvatures of M” are equal to one, both x and y are isometric
imbeddings of M" onto great n-spheres in §**!, from which it follows that there
is an isometry « of S**! such that aqox = y.

If there are sectional curvatures of M” greater than one, then, as we observed
in § 3, both x and y are imbeddings, and both x(M") and y(M*) lie in open
hemispheres and are boundaries of convex bodies. Without loss of generality
we can assume that both x(A*) and y(M") lie in the open northern hemisphere
H,, and that both are ‘““visible from the inside” at the north pole ¢, = (0, . . -,
0, 1) (that is, any geodesic from the north pole meets each surface in exactly
one point).

To prove rigidity we shall use a generalization to n-dimensions of a technique
due to Pogorelov, which involves mapping the surfaces x(M*) and y(M") to
En*' via special mixed Beltrami-like maps, applying known rigidity theorems
in E**' and then mapping back to the sphere.

Define ¥: M" — E™*! (similarly : M* — E""!) by

(1) p) = [x(p) — ex(p). ex)]/ (e, x(p) + ¥(P)) .

Here we are using vector notation in E£**%, and (,) denotes the standard
Euclidean inner-product. Now x,y, X and 7 can each be considered as a
vector-valued function on M* with values in £%*?, so their differentials d.x, dy,
dX% and dp can be considered as E**2-valued one-forms on M. Both ¥ and
are C= imbeddings of M”* into E**' C E***, and further induce the same metric
on M”. For, in view of the facts that (dx, dx) = (dy, dy) and (dx, x) = (dy, ¥)
=0, by an elementary calculation one can show that (d%, d%) = (d7, dp).
Denote M* with the metric induced from % and § by M*. Thus ¥ and ¥ are iso-
metric imbeddings of A* into E**'. It follows from Pogorelov’s Theorem 3
[13, p. 63] that both %(A7") and $(M™) are locally convex hypersurfaces in
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E™t'. Pogorelov’s theorem is written for the special case n = 2 but goes over
nearly word for word for general n. Thus the sectional curvatures of M” are
all greater than or equal to zero, and since ¥(M*) is a compact hypersurface of
En*!, there is at least one point of M* at which all sectional curvatures are
strictly positive. By [14] or [7], both X(M*) and #(M") bound convex bodies
in E**'. Thus it follows from Theorem V of [15] that there exists an isometry
@ of E"*! such that @oX = 7.
We define maps p, and p, from £*'" into §*'' by

2p + el + (@p) — pH

pl(p) - >
(2) ‘ || numerator ||
_ 2p + el + @’(p) — p)
Pz(p) - >
| numerator ||

Here p* is used to denote the inner product (p, p) in E**?. Now p, and p, are
C=, and a straightforward calculation shows that

olX(p)) = x(p) ,

o(¥(p)) = ¥(p)

for all pe M*. The following argument due to Pogorelov shows that p,, simi-
larly p,, is a 1:1 map. Suppose p == g e E” " but p,(p) = p,(g). 1t follows im-
mediately from the nature of the map p, that p and g must be parallel, so there
exists a unit vector v ¢ E**! such that p = Av and g = pv. Furthermore, the
equality of p,(p) and p,(g) yields immediately the equality

(3) (1 + @p)® — 22 =11 + @) — pljp .
Consider & as a rotation &@* followed by a translation by the vector ¢. Then

(@(p) = (@*v) + o) = & + 2a*(w), ) + 2,
(@(@) = p2 + 2@ (pv), ) + ¢,

and using these, (3) becomes

(4) ! J;C + 2@ @), 0) = 1< 1 2@k @), o) -
i

Thus 2 = g and p = ¢, which is a contradiction. So p, is 1:1, and similarly
p. is 1:1. It follows from the invariance of domain theorem that p, and p, are
both open maps. Hence p,o&op;* defines a 1:1 map « on some connected open
neighborhood of x(M") in S**' and a(x(p)) = y(p). We claim « extends to an
isometry of $**! (which will complete the proot of Theorem 1.1 (b)) and for
this it is sufficient to prove « preserves distances. To this end, by following an
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argument of Pogorelov we show that
(5) (0(P) — pA@))* = (o(@(p)) — p(&(q)))* .

Since the Euclidean distance between a pair of points on the sphere uniqully
determines their spherical distance, this will complete the proof. To prove (5)
it suffices to prove

(6) (0P, 0,(@)) = (p@&(p)), p(@(q))) -
Let

a(p) = 2p + el + (@(p))* — P,
b(p) = 2a(p) + e(1 + p* — (@p)?) .

Then
o(p) = a(p){ V@)l ,
o@(p)) = b(p)V(B(P) .
So to prove (6) it suffices to prove that for an arbitrary pair of points p, g ¢ E**!,
(7) (a(p), a(q)) = (b(p), b(q)) .
Now

(a(p), a(q)) = 4(p,q) + (1 + a(py — P + &(q) — g9 ,
(b(p), b(q)) = 4a(p), &(q)) + (1 + p* — &p)H(1 + ¢* — al(g)) .

Write @ as a rotation #* and a translation by the vector ¢. Then
a(p)y = p* + 2(c,&*(p) + ¢*,
a(@) = q' + 2Ac,a*(q) + ¢,
and
(ap), @) = (p. q) + (c,&a*(p) + a*(q) + ¢*.
Substituting these expression in (8), one immediately obtains (7). This completes

the proof of Theorem 1.1.

5. Ambient manifold of constant negative curvature

Let X**' now be a simply connected manifold with constant sectional
curvature equal to — 1 (the hyperbolic space), and let x: M* — X"*! be an
isometric immersion of a compact, connected orientable C~ Riemannian
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manifold M" whose sectional curvatures are all greater than or equal to — 1.
X"*! possesses a global Beltrami coordinate system giving a geodesic mapping
of X"'! onto a half space in £**! [3, p. 435]. If we transfer the hypersurface
x(M") to E**! via this Beltrami map, then by arguments similar to those in
Lemma 2.2 and Proposition 2.3 we obtain a compact hypersurface of E**!
with sectional curvatures > 0. Applying the known results for E**! and trans-
ferring back to X**' we conclude that x is an imbedding, M" is diffeomorphic
to §*, and x(M") bounds a convex body in X"*'. Thus we have the analogue
of Theorem 1.1 (a) for this case. As for part (b) of the theorem, Pogorelov
claims in his preface to [13] that his formulas can be suitably modified for a
suitable model of the constant negative curvature case. It seems entirely
possible to us that the proof of rigidity in § 4 could also be suitably modified
to give the analogue of (b) for hyperbolic space case. However, we have not
attempted this.

5.1 Remarks

(a) It may be mentioned that the fact that a compact manifold M is im-
mersed as a hypersurface of the hyperbolic space puts some restrictions on the
curvature of M. For instance, it has been shown by Amaral [2, p. 19] that
under such hypotheses, some sectional curvature of M is necessarily positive.

(b) Our methods do not apply for complete, non-compact hypersurfaces
of a hyperbolic space to give a result similar to that of Sacksteder in [14].
Actually such a result will be of little topological interest in view of the follow-
ing theorem [1, p. 453]: Given any open connected set U in a sphere of dimen-
sion n — 1, there exists a complete convex hypersurface S in the hyperbolic
space of dimension # such that .S is homeomorphic with U.
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